
Download free eBooks at bookboon.com

Structured Programming with C++

73

4 Arrays

4 Arrays
4.1 Introduction

In this chapter you will learn what an array is, namely a method of storing many values under a single variable name,
instead of using a specific variable for each value. We will begin by declaring an array and assign values to it.

In connection with arrays you will have great use for loops, by means of which you can efficiently search for a value in
the array and sort the values.

Arrays is a fundamental concept within programming which will frequently be used in the future.

4.2 Why Arrays

An array is, as already mentioned, a method of storing many values of the same data type and usage under a single variable
name. Suppose you want to store temperatures measured per day during a month:

12.5

10.7

13.1

11.4

12.1

...

If you didn’t know about arrays, you would need 30 different variable names, for instance:

tempa = 12.5

tempb = 10.7

tempc = 13.1

tempd = 11.4

tempe = 12.1

...

This is a bad option, especially if you want to calculate the average temperature or anything else. Then you would need
to write a huge program statement for the sum of the 30 variables.

Instead, we use an array, i.e. one single variable name followed by an index within square brackets that defines which of
the temperatures in the array that is meant:

temp[1] = 12.5

temp[2] = 10.7

temp[3] = 13.1

temp[4] = 11.4

temp[5] = 12.1

...

http://bookboon.com/

Download free eBooks at bookboon.com

Structured Programming with C++

74

4 Arrays

The name of the array is temp. The different values in the array are called elements.

In this way we can use a loop, where the loop variable represents the index, and do a repeated calculation on each of the
temperatures:

for (i=1; i<=30; i++)

{

 //Do something with temp[i];

}

The loop variable i goes from 1 to 30. In the first turn of the loop i has the value 1, which means that temp[i] represents
temp[1], i.e. the first temperature. In the second turn of the loop i has the value 2 and temp[i] represents the second
temperature.

By using a loop the amount of code required will not increase with the number of temperatures to handle. The only thing
to be modified is the number of turns that the for loop must execute.

In the code below we calculate the average of all the temperatures:

iSum = 0;

for (i=1; i<=30; i++)

{

 iSum += temp[i];

}

dAvg = iSum / 30;

cout << dAvg;

The variable iSum is set to 0 since it later on will be increased by one temperature at a time. The loop goes from 1 to 30,
i.e. equal to the number of elements in the array. In the loop body the variable iSum is increased by one temperature at
a time. When the loop has completed, all temperatures have been accumulated in iSum. Finally we divide by 30 to get
the average, which is printed.

4.3 Declaring an Array

Like for all variables, an array must be declared. Below we declare the array temp:

double temp[31];

The number within square brackets indicates how many items the array can hold, 31 in our example. 31 positions will be
created in the primary memory each of which can store a double value. The indeces will automatically be counted from 0.
This means that the last index is 30. If you need temperatures for the month April, which has 30 days, you have two options:

1. Declare temp[30], which means that the indeces goes from 0 to 29. 1st of April will correspond to index 0,
2nd of April to index 1 etc. 30th of April will correspond to index 29. The index lies consequently one step
after the actual date.

2. Declare temp[31]. Then 1st of April can correspond to index 1, 2nd of April to index 2 etc. 30th of April will
correspond to index 30. The date and index are here equal all the time. This means that the item temp[0] is
created ”in vain” and will never be used.

http://bookboon.com/

Download free eBooks at bookboon.com

Click on the ad to read more

Structured Programming with C++

75

4 Arrays

It is no big deal which of the methods you use, but you will have to be conscious about the method selected, because it
affects the code you write. We will show examples of both methods.

Note that, in the declaration:

double temp[31];

all elements are of the same data type, namely double. For arrays all elements all items always have the same data type.

4.4 Initiating an Array

You can assign values to an array already at the declaration, e.g.:

int iNo[5] = {23, 12, 15, 19, 21};

Here the array iNo will hold 5 items, where the first item with index 0 gets the value 23, the second item with index 1
the value 12 etc.

The enumeration of the values must be within curly brackets, separated by commas.

As a matter of fact it is redundant information to specify the number of items to 5 in the declaration above, since the
number of enumerated values is 5. Therefore you could as well write:

int iNo[] = {23, 12, 15, 19, 21};

An enumeration within curly brackets can only be written in the declaration of an array. For instance, the following is
erroneous:

http://bookboon.com/
http://bookboon.com/count/advert/7a02d4d2-9105-46a9-9453-a37800b93d7c

Download free eBooks at bookboon.com

Structured Programming with C++

76

4 Arrays

double dTemp[4];

dTemp = {12.3, 14.1, 11.7, 13.8};

In the following code section we declare an array of integers and assign values to the array in the loop:

int iSquare[11];

for (int i=0; i<=10; i++)

{

 iSquare[i] = i*i;

}

The array iSquare is declared to hold 11 items of integer type. The loop then goes from 0 to 10. In the first turn of the
loop i is =0 and the item iSquare[0] gets the value 0*0, i.e. 0. In the second turn of the loop i is =1 and iSquare[1] gets
the value 1*1, i.e. 1. In the third turn of the loop the item iSquare[2] gets the value 2*2, i.e. 4. Each item will contain a
value equal to the square of the index.

4.4.1 Index outside the Interval

As a C++ programmer you must yourself keep track of the valid index interval. The result could be disastrous if you wrote:

temp[35] = 23.5;

This means that we store the value 23.5 in the primary memory at an adress that does not belong to the array, but might
belong to a memory area used for other data or program code. If you run such a code the system might in worst case
break down and you will have to restart the computer.

4.5 Copying an Array

Suppose we want to copy the temperatures from the array with April’s values to an array with June’s values. You cannot
copy an entire array in this way:

dblTempJune = dblTempApr;

You will have to copy the values item by item by means of a loop:

for (int i=1; i<=30; i++)

{

 dblTempJune[i] = dblTempApr[i];

}

Here the loop goes from 1 to 30 and we copy item by item for each turn of the loop.

4.6 Comparing Arrays

What is meant by comparing whether two arrays are equal? They must contain item values that are equal in pairs. In the
following code section we compare the two arrays with April’s and June’s temperatures:

int eq = 1;

for (int i=1; i<=30; i++)

http://bookboon.com/

Download free eBooks at bookboon.com

Structured Programming with C++

77

4 Arrays

{

 if (dblTempJune[i] != dblTempApr[i])

 eq = 0;

}

Here we let the variable eq reflect whether the two arrays are equal, where the value 1 corresponds to ”equal” and 0 ”not
equal”. From the beginning we assign eq the value 1, i.e. we presume the arrays to be equal. Then in the loop we go through
item by item in the two arrays and checks if they are equal in pairs. The if statement checks if they are different. If so,
the variable eq is set to 0, otherwise nothing is changed. If two items happen to be different, the variable eq will have the
value 0 after the loop has completed. If however all pairs of items are equal, the statement:

eq = 0;

will never be executed, and the variable eq will remain =1. We could then complete our program with output about the
result:

if (eq == 1)

 cout << "The arrays are equal";

 else

 cout << "The arrays are different";

It is not possible to in one single statement check whether the arrays are equal:

if (dblTempJune == dblTempApr)

You must compare item by item like in the code above.

4.7 Average

We will now write a program that reads temperatures to an array from the user and then calculates the average of all
temperatures. The program should then print the average and all temperatures exceeding the average. We begin with a
JSP graph:

University West, Trollhättan Structured Programming with C++
Department of Economy and Informatics

Copyright Page: 73

We have made an overview JSP that mainly describes the procedure.

Since we will calculate an average, we need the sum of all
temperatures. We choose to sum the temperatures at the time of entry,
which is made in a loop:

The average calculation is simple. We don’t have to detail it. However
the output is a little more complicated. First we print the calculated
average. Then we write a loop which in turn checks each item of the
array against the calculated average. If temperature number i is greater
than the average, we print temp no. i.

Here is the code:

Average

Enter temp Calculate
average

Print

Average

Enter temp Calculate
average

Print

Enter
temp no. i

Accumulate * * Print avg Print
all > avg

temp no. i
> avg ?

Print
temp no. i

*

o

We have made an overview JSP that mainly describes the procedure.

Since we will calculate an average, we need the sum of all temperatures. We choose to sum the temperatures at the time
of entry, which is made in a loop:

http://bookboon.com/

Download free eBooks at bookboon.com

Click on the ad to read more

Structured Programming with C++

78

4 Arrays

University West, Trollhättan Structured Programming with C++
Department of Economy and Informatics

Copyright Page: 73

We have made an overview JSP that mainly describes the procedure.

Since we will calculate an average, we need the sum of all
temperatures. We choose to sum the temperatures at the time of entry,
which is made in a loop:

The average calculation is simple. We don’t have to detail it. However
the output is a little more complicated. First we print the calculated
average. Then we write a loop which in turn checks each item of the
array against the calculated average. If temperature number i is greater
than the average, we print temp no. i.

Here is the code:

Average

Enter temp Calculate
average

Print

Average

Enter temp Calculate
average

Print

Enter
temp no. i

Accumulate * * Print avg Print
all > avg

temp no. i
> avg ?

Print
temp no. i

*

o

The average calculation is simple. We don’t have to detail it. However the output is a little more complicated. First we print
the calculated average. Then we write a loop which in turn checks each item of the array against the calculated average.
If temperature number i is greater than the average, we print temp no. i.

http://bookboon.com/
http://bookboon.com/count/advert/7df08111-c180-4bd8-97db-a2d500e6043a

Download free eBooks at bookboon.com

Structured Programming with C++

79

4 Arrays

Here is the code:

#include <iostream.h>

void main()

{

 // Deklarations

 const int iNoOfDays = 30;

 double dAvg, dSum = 0;

 double dblTempApr[iNoOfDays + 1];

 int i;

 // Entry and calculation

 for (i=1; i<= iNoOfDays; i++)

 {

 cout << "Temperature day " << i;

 cin >> dblTempApr[i];

 dSum += dblTempApr[i];

 }

 dAvg = dSum / iNoOfDays;

 // Printout

 cout << "Average temperature: " << dAvg << endl;

 cout << "Temperatures exceeding average: " << endl;

 for (i=1; i<= iNoOfDays; i++)

 {

 if (dblTempApr[i] > dAvg)

 cout << "Day no.: "<<i<<" temp:

 "<<dblTempApr[i]<<endl;

 }

}

First we declare a constant iNoOfDays which is set to 30 and is used later in loops and average calculation. The variable
dAvg is used for storing of the calculated average. The variable dSum is initiated to 0 since it will be increased by the
value of each entered temperature. The array dblTempApr is declared to hold 31 items, which means that we can let the
index values correspond to the day numbers of the month. The item with index 0 will consequently not be used. Finalyy
we declare the variable i, which is used as loop counter.

The first loop takes care of entry of the temperatures. The loop counter goes from 1 to 30 and each entered temperature
is stored in the array. The variable dSum is increased by the entered temperature.

At loop completion the variable dSum contains the accumulated total of all temperatures, which is divided by the number
of days, which gives the average.

The printout starts with the average. Then comes the last loop which goes from 1 to 30. For each turn of the loop we
check whether temperature number i exceeds the average. If so, the day number is printed, which is equal to the index
value, together with the corresponding temperature.

http://bookboon.com/

Download free eBooks at bookboon.com

Structured Programming with C++

80

4 Arrays

4.8 Sales Statistics

We will now give an example that shows how to use arrays and conditional input in a while statement. The situation is this:

A company has a number of salesmen, each with a salesman number in the interval 1-100. When a salesman has sold for
a specific amount, he enters his salesman number and the sales amount. This goes on until you terminate the entry with
Ctrl-Z. Then a summary should be printed with one line per salesman showing total sales amount.

Furthermore, a fee per salesman should be calculated. If the sales amount is below 50000:- the fee is 10% of the sales
amount. If the amount is greater, the salesman will get a fee which is 10% of the first 50000:- plus 15% of the amount
exceeding 50000:-. If for instance the sales amount is 70000:- the fee is 10% of 50000:- which gives 5000:- plus 15% of the
exceeding 20000:- which is 3000:-. The total fee will in this case be 8000:-.

An entry from different salesmen could look like this:

78 10000

32 500

2 12000

100 25000

78 60000

2 1000

5 60000

The printout will then be:

Number Amount Fee

====== ====== =====

 2 13000 1300

 5 60000 6500

 32 500 50

 78 70000 8000

 100 25000 2500

We begin with a JSP graph:

University West, Trollhättan Structured Programming with C++
Department of Economy and Informatics

Copyright Page: 75

Sales Statistics
We will now give an example that shows how to use arrays and
conditional input in a while statement. The situation is this:

A company has a number of salesmen, each with a salesman number
in the interval 1-100. When a salesman has sold for a specific amount,
he enters his salesman number and the sales amount. This goes on
until you terminate the entry with Ctrl-Z. Then a summary should be
printed with one line per salesman showing total sales amount.

Furthermore, a fee per salesman should be calculated. If the sales
amount is below 50000:- the fee is 10% of the sales amount. If the
amount is greater, the salesman will get a fee which is 10% of the first
50000:- plus 15% of the amount exceeding 50000:-. If for instance the
sales amount is 70000:- the fee is 10% of 50000:- which gives 5000:-
plus 15% of the exceeding 20000:- which is 3000:-. The total fee will
in this case be 8000:-.

An entry from different salesmen could look like this:
78 10000
32 500
2 12000
100 25000
78 60000
2 1000
5 60000

The printout will then be:
Number Amount Fee
====== ====== =====
 2 13000 1300
 5 60000 6500
 32 500 50
 78 70000 8000
 100 25000 2500

We begin with a JSP graph:

Sales

Initialize sales Entry Print

We will use an array called sales with 100 items, where each item corresponds to a certain salesman. For each entered sales
amount the array item corresponding to the salesman number should be increased by the entered amount. Therefore we
must initialize the entire array, i.e. set all its items = 0 so each salesman’s accumulated amount starts with 0. Note that in
C++ the items of an array are not automatically set to 0 at the declaration. The declaration only allocates memory space.

http://bookboon.com/

Download free eBooks at bookboon.com

Click on the ad to read more

Structured Programming with C++

81

4 Arrays

Any unpredictable values present in these memory addresses will be retained until you initialize them.

Then we read salesman number and sales amount. This is made in a loop so that we can go on with entry of values as
long as we want. We break down the “Entry” box:

University West, Trollhättan Structured Programming with C++
Department of Economy and Informatics

Copyright Page: 76

We will use an array called sales with 100 items, where each item
corresponds to a certain salesman. For each entered sales amount the
array item corresponding to the salesman number should be increased
by the entered amount. Therefore we must initialize the entire array,
i.e. set all its items = 0 so each salesman’s accumulated amount starts
with 0. Note that in C++ the items of an array are not automatically set
to 0 at the declaration. The declaration only allocates memory space.
Any unpredictable values present in these memory addresses will be
retained until you initialize them.

Then we read salesman number and sales amount. This is made in a
loop so that we can go on with entry of values as long as we want. We
break down the “Entry” box:

We read a salesman number and sales amount, one at a time. In the
box “OK?” we check that the salesman number is between 1 and 100
and that the sales amount is not negative. If OK, we increase the
corresponding item in the sales array.

The box ”Print” has been detailed by first printing the heading and
then the sales values. In connection with the printing we check that the
sales amount is not 0. Salesmen having sold nothing should not be
included in the printed summary. We break down the box “Print sales”
further:

Sales

Initialize sales Entry Print

Read
no and
amount

OK?

Increase
sales

* *

o

Print
heading

Print
sales

We read a salesman number and sales amount, one at a time. In the box “OK?” we check that the salesman number is
between 1 and 100 and that the sales amount is not negative. If OK, we increase the corresponding item in the sales array.

“The perfect start
of a successful,
international career.”

CLICK HERE
to discover why both socially

and academically the University

of Groningen is one of the best

places for a student to be
www.rug.nl/feb/education

Excellent Economics and Business programmes at:

http://bookboon.com/
http://bookboon.com/count/advert/5e8cd819-4ddd-4941-a6bb-a16900eac393

Download free eBooks at bookboon.com

Structured Programming with C++

82

4 Arrays

The box ”Print” has been detailed by first printing the heading and then the sales values. In connection with the printing
we check that the sales amount is not 0. Salesmen having sold nothing should not be included in the printed summary.
We break down the box “Print sales” further:

University West, Trollhättan Structured Programming with C++
Department of Economy and Informatics

Copyright Page: 76

We will use an array called sales with 100 items, where each item
corresponds to a certain salesman. For each entered sales amount the
array item corresponding to the salesman number should be increased
by the entered amount. Therefore we must initialize the entire array,
i.e. set all its items = 0 so each salesman’s accumulated amount starts
with 0. Note that in C++ the items of an array are not automatically set
to 0 at the declaration. The declaration only allocates memory space.
Any unpredictable values present in these memory addresses will be
retained until you initialize them.

Then we read salesman number and sales amount. This is made in a
loop so that we can go on with entry of values as long as we want. We
break down the “Entry” box:

We read a salesman number and sales amount, one at a time. In the
box “OK?” we check that the salesman number is between 1 and 100
and that the sales amount is not negative. If OK, we increase the
corresponding item in the sales array.

The box ”Print” has been detailed by first printing the heading and
then the sales values. In connection with the printing we check that the
sales amount is not 0. Salesmen having sold nothing should not be
included in the printed summary. We break down the box “Print sales”
further:

Sales

Initialize sales Entry Print

Read
no and
amount

OK?

Increase
sales

* *

o

Print
heading

Print
sales

If the sales amount exceeds 0, we calculate the fee and print one line in the summary. At fee calculation we will now pay
attention to whether the amount exceeds the limit 50000:-, which gives still another detailed level:

University West, Trollhättan Structured Programming with C++
Department of Economy and Informatics

Copyright Page: 78

If the sales amount is below the limit 50000:- the lower percent 10%
will be applied. Otherwise the greater percent 15% will be applied to
the exceeding amount. When the fee calculation is finished, the fee
and sales amount are printed.

Here is the code:

#include <iostream.h>
#include <iomanip.h>
void main()
{
 const int iMaxNo=100;
 const double dLimit=50000, perc1=0.1, perc2=0.15;
 double sales[iMaxNo], dAmount, dFee;
 int i, nr;
 //Initialize array
 for (i=0;i<iMaxNo; i++)
 sales[i] = 0;
 //Enter salesman info

Sales

Initialize sales Entry Print

Read
no and
amount

OK?

Increase
sales

* *

o

Print
heading

Print
sales

sales[i]>0 *

Calculate fee
and print

o

sales[i]<limit Print fee
and sales

perc1 perc2
o o

http://bookboon.com/

Download free eBooks at bookboon.com

Structured Programming with C++

83

4 Arrays

If the sales amount is below the limit 50000:- the lower percent 10% will be applied. Otherwise the greater percent 15%
will be applied to the exceeding amount. When the fee calculation is finished, the fee and sales amount are printed.

Here is the code:

#include <iostream.h>

#include <iomanip.h>

void main()

{

 const int iMaxNo=100;

 const double dLimit=50000, perc1=0.1, perc2=0.15;

 double sales[iMaxNo], dAmount, dFee;

 int i, nr;

 //Initialize array

 for (i=0;i<iMaxNo; i++)

 sales[i] = 0;

 //Enter salesman info

 while (cin>>nr && cin>>dAmount)

 {

 if (nr<1 || nr>iMaxNo || dAmount<0)

 cout << "Input error" << endl;

 else

 sales[nr-1] += dAmount;

 }

 //Print summary

 cout << endl

 << "Number Amount Fee" << endl

 << "====== ====== =====" << endl;

 for (i=0; i<iMaxNo; i++)

 {

 if (sales[i] > 0)

 {

 if (sales[i] <= dLimit)

 dFee = perc1 * sales[i];

 else

 dFee = perc1*dLimit + perc2*(sales[i]-dLimit);

 cout << setw(4) << (i+1) <<

 setprecision(0) << setiosflags(ios::fixed) <<

 setw(13) << sales[i] << setw(10) <<

 dFee << endl;

 } // end if

 } // end for-loop

} // end main

http://bookboon.com/

Download free eBooks at bookboon.com

Structured Programming with C++

84

4 Arrays

The constant iMaxNo = 100 represents the number of salesmen and is used for loop control. The constand dLimit =
50000 is used for the fee calculation. The constants perc1 and perc2 are the two different percentages used for the fee.

The array is declared to contain 100 items with the index 0-99. Here, salesman no.1 will correspond to index 0, salesman
no. 2 index 1 etc.

The variable dAmount is used for entry of sales amounts and the variable dFee for fee calculation. The variable i is used
as loop counter and the variable nr to entry of salesman numbers.

Then the sales array is initialized, where we set all items to 0.

Entry of salesman numbers and amounts is done in a while statement. If entry is successful, the loop continues. If you
however you press Ctrl-Z, the while condition is false and the entry loop is interrupted, enabling the program to continue
with the next statement.

Inside the loop the program checks if the salesman number is less than 1 or greater than 100. This is for safety reason to
guarantee that we don’t go outside the index interval of the array, since the salesman number gives the index value of the
array. In addition, the program also checks if the sales amount is less than 0. If any of these conditions are true, the text
“Input error” is printed and the user can enter new values. If everything is OK, the sales item is increased by the entered
amount. Note that we decrease the salesman number by 1 to get the correct item in the array.

At loop completion (Ctrl-Z), the program goes on with printing the summary heading.

Then the last loop will calculate the fee and print one line per salesman. First in the loop, we check the sales total to be
greater than 0, otherwise no line for that salesman is printed. Then we check if the sales total is less than the limit 50000. If
so, the fee is calculated as the lower percent multiplied by the sales total. Otherwise the fee is calculated as the lower percent
times the limit 50000 plus the greater percent multiplied by the difference between the sales total and the limit 50000.

http://bookboon.com/

Download free eBooks at bookboon.com

Structured Programming with C++

85

4 Arrays

When the inner if statement has completed the fee calculation is complete and the program writes a line with salesman
number (i+1), sales total (sales[i]) and fee. Note that, when we print the salesman number, we must use the index value
increased by 1, since the index value all the time is 1 less than the salesman number.

We have also used the formatting functions from the header file iomanip.h to get a nice layout with straight columns.

4.9 Product File, Search

We will now examine a situation where we use several arrays in parallel. We will build a simple product file, where we use
an array for the product id:s and another array for the product prices. We will organize it so that a product in the product
id array with for instance index 73 has its price in the price array at the same index position, i.e. 73:

Prodid Price

2304 152,50

2415 75,40

3126 26,80

...

The array with product id:s is called iProdid and the price array dPrice.

Suppose we want to be able to enter a product id and get the corresponding price. Then we must search the iProdid array.
Look at the following code section:

while (cin >> iProd)

{

 for (i=1; i<=100; i++)

 {

 if (iProd == iProdid[i])

 cout << "The price is: " << dPrice[i] <<

 endl;

 }

}

In the while condition we read a product id to the variable iProd. This allows for repeated entry of product id:s until you
interrupt with Ctrl-Z.

The inner loop goes from 1 to 100 and checks one item at a time in the product id array to equal the entered product id.
The loop counter i going from 1 to 100 is used as index in the product id array and represents the different product id:s
in the array. Note that we use the same i-value in the price array as in the product id array. If for instance we encounter
equality for the 23rd product, also the 23rd price should be printed, since the variable i then has the value 23.

4.10 Two-Dimensional Array

In many business systems on the market customer discounts are based on the customer group that the customer belongs
to, and the product group for the bought product. Different customer segments will then get different discount profiles.

http://bookboon.com/

Download free eBooks at bookboon.com

Structured Programming with C++

86

4 Arrays

Example:

 Product group

 1 2 3

Customer 1 10 12 13

group 2 13 14 15

 3 14 16 17

If for example a customer of customer group 3 orders a product from product group 2, he will get 16% discount.

To store a discount matrix in this way in a program, you will need a two-dimensional array. Such an array has two indeces,
where the first index could be thought of as representing the lines in the matrix, and the second index the columns:

double dDiscount[5][8];

Here we have declared a two-dimensional array named dDiscount with 5 lines (index 0-4) and 8 columns (index 0-7).

To assign values to the different array items, we can write:

dDiscount[1][1] = 10;

dDiscount[1][2] = 12;

...

Note that we all the time must use two indeces for dDiscount.

Suppose that we want a program section where the user can enter customer group and product group and the program
should respond with the corresponding discount percent:

cout << "Enter customer group ";

cin >> cgrp;

cout << "Enter product group ";

cin >> pgrp;

cout << "Discount: " << dDiscount[cgrp][pgrp];

Suppose that, when this program section is run, the user enters 3 and 2. The variable cgrp will get the value 3 and pgrp
the value 2. These two values are used as indeces in the two-dimensional array. If we use the values from the discount
matrix above, we will get the printout:

Discount: 16

Let us now turn the problem the other way so that the user enters a discount percent and that the program responds
with corresponding customer group and product group. A prerequisite to this is that each percent only occurs once in
the matrix, which is not very likely, but it shows how to search a two-dimensional array. The code will be:

cout << "Enter percent: ";

cin >> dPerc;

for (i=1; i<=5; i++)

{

http://bookboon.com/

Download free eBooks at bookboon.com

Click on the ad to read more

Structured Programming with C++

87

4 Arrays

 for (j=1; j<=8; j++)

 {

 if (dDiscount[i][j] == dPerc)

 cout << "Product group " << i <<

 " and customer group " << j;

 }

}

First the user is prompted for a percent which is stored in the variable dPerc. A double loop then performs the search for
the entered percent, where the outer loop goes through the lines of the matrix and the inner loop through the columns
of the matrx. The loop counter i thus corresponds to line index and j to column index. The inner loop goes through all
its values before the outer loop changes its value, which means that the matrix is searched one line at a time, where all
items in the line are checked. The if statement checks if the matrix item equals the entered percent (the variable dPerc).
If equal, the corresponding loop counters i and j are printed, which correspond to customer group and product group.

4.11 Sorting

Many times it is easier to work with an array if the items are sorted, especially when searching for a specific value. For
instance, in the product id array in an earlier section, if the product id:s are sorted by size, the process of finding a certain
product, and consequently also its price, is much faster than for an unsorted array. We will therefore discuss array sorting.

We will as example use an array with 6 items named iNos:

int iNos[6] = {5,3,9,8,2,7};

LIGS University
based in Hawaii, USA

 ▶ enroll by October 31st, 2014 and

 ▶ save up to 11% on the tuition!

 ▶ pay in 10 installments / 2 years

 ▶ Interactive Online education
 ▶ visit www.ligsuniversity.com to

 find out more!

is currently enrolling in the
Interactive Online BBA, MBA, MSc,

DBA and PhD programs:

Note: LIGS University is not accredited by any
nationally recognized accrediting agency listed
by the US Secretary of Education.
More info here.

http://bookboon.com/
http://bookboon.com/count/advert/ff2a784e-44d0-4687-80af-a3bc00b4ceb5

Download free eBooks at bookboon.com

Structured Programming with C++

88

4 Arrays

The items of the array are not yet sorted. We want to write a program that sorts them by size. The problem is that a
computer program is not capable of, like the human eye, scan the values and instantly sort them. We have to write code
that systematically compares two values in turn and interchange their positions in the array.

We will use two variables, l and r, which are indeces in the array and points to two items. l means “left” and r “right”. These
items are compared in pairs, and if the right item is less than the left, they will interchange their positions in the array:

 0 1 2 3 4 5

5 3 9 8 2 7

 l r

The indeces of the array have the interval 0-5. The variable l has from the beginning the value 0 and r the value 1, i.e. they
point on the two first items of the array. Since the right item is less than the left (3 is less than 5), they are interchanged:

 0 1 2 3 4 5

3 5 9 8 2 7

 l r

We then increase r by 1, so that it points to the value 9, while l remains. 9 is not less than 3, so no interchange is made.
r is again increased by 1:

 0 1 2 3 4 5

3 5 9 8 2 7

 l r

Neither this time there is no interchange, since 8 is greater than 3. We increase r by 1 again. Then r points to the value 2,
which is less than 3, so the items are interchanged:

 0 1 2 3 4 5

2 5 9 8 3 7

 l r

We increase r by 1 again. 7 is greater than 2, so the items remain:

 0 1 2 3 4 5

2 5 9 8 3 7

 l r

Now r has gone through all values, and as result we have got the least item on index position 0 in the array. We have
performed a series of comparisons.

Now we increase l by 1 and perform a new series of comparisons, where r goes from index position 2 to 5:

 0 1 2 3 4 5

2 5 9 8 3 7

 l r

http://bookboon.com/

Download free eBooks at bookboon.com

Structured Programming with C++

89

4 Arrays

Here 9 is not less than 5, so we increase r by 1 and so forth. When r arrives at index position 4, the right item (3) is less
than the lef t (5), so we interchange them.

When two series of comparisons have been completed, we have got the two least items on the two first positions:

 0 1 2 3 4 5

2 3 9 8 5 7

Once again we increase l by 1 and let r go from the item immediately to the right of l to the last item of the array. This is
repeated until we compare the two last items of the array:

 0 1 2 3 4 5

2 3 5 7 8 9

 l r

After completion of the last comparison, the entire array is sorted.

To summarize, l goes from 0 to the next last position of the array, while r goes from the position to the right of l to the
last position of the array. We use an outer loop for the l-values and an inner for the r-values:

for (l=0; l<=4; l++)

{

 for (r=l+1; r<=5; r++)

 {

 //Check if right is less than left

 //and in that case interchange

 }

}

l goes from 0 (first position of the array) to 4 (next last position), while r goes from l+1 (the position to the right of l) to
5 (last position).

The check whether the right is less than the left is made by an if statement:

if (iNos[r] < iNos[l])

The interchange is a little tricky. We cannot directly let two variables change values. We must use an intermediary storage,
a temporary variable that temporary stores one of the values:

temp = iNos[l];

iNos[l] = iNos[r];

iNos[r] = temp;

Here we let the variable temp get the value of the left item, then we let the left item get the value of the right item, and
finally we let the right item get the value of the temporary variable, i.e. the old left value. This triangular exchange has the
effect that the two array items interchange their values. After the triangular exchange the value of temp is of no concern.

http://bookboon.com/

Download free eBooks at bookboon.com

Structured Programming with C++

90

4 Arrays

Here is the complete code:

for (l=0; l<=4; l++)

{

 for (r=l+1; r<=5; r++)

 {

 if (iNos[h] < iNos[v])

 {

 temp = iNos[l];

 iNos[l] = iNos[r];

 iNos[r] = temp;

 }

 }

}

After completion of the double loop the array items are sorted.

4.12 Searching a Sorted Array

For a sorted array, when searching for a particular item, we don’t need to scan the entire array from the first to the last
position and check each single value. For a small array with only 6 items like in the previous example, there is no big deal.
But what if we have a product array with thousands of product id:s. Then the search time would be considerable and our
program would be regarded as having bad performance.

http://bookboon.com/

Download free eBooks at bookboon.com

Structured Programming with C++

91

4 Arrays

We will use a more refined method, namely to halve the index interval repeatedly. We go in to the middle item of the
array and check if the searched value is to left or right. When having selected which half to continue with, we halve that
part again. This is repeated until we find the searched value. The execution time will be reduced considerably.

Suppose we have a product array with 31 items (index 0-30)

 0 1 2 ... 15 ... 30

 2314 2345 3123 4526 6745

The index values are shown above the product id:s.

Suppose we are searching for product id 5321. We begin with checking whether 5231 is less than the middle item with
index position 15, namely 4526. If so we go on with the left interval, otherwise the right. In our case we use the right
interval, which we halve and get index position 22 (index must always be an integer). We check whether the searched
product id 5231 is greater or less than the product id on position 22, etc.

When having divided the interval enough number of times, we will have found the searched item, or otherwise it does
not exist in the array.

We will now discuss the code for this. First we declare some variables:

int l=0, r=30, iFound=0, iPos, iSrch;

The variables l and r are index positions of the array. l is the left end point of the interval, which from the beginning is
0. r is the right which from the beginning is 30.

The variable iFound is used to indicate whether or not the searched product id has been found. The value 0 means not
yet found, and the value 1 means that it has been found.

The variable iPos is the index for the found product id. The variable iSrch is the searched product id, which is read from
the keyboard:

cout << "Enter the searched product id: ";

cin >> iSrch;

We then perform some introductory checks to figure out if the searched product id is first or last in the array:

if (iSrch == iProdid[0])

{

 iPos = 0;

 iFound = 1;

}

if (iSrch == iProdid[30])

{

 iPos = 30;

 iFound = 1;

}

http://bookboon.com/

Download free eBooks at bookboon.com

Structured Programming with C++

92

4 Arrays

As long as the product id has not been found, we will divide the interval:

while (!iFound)

{

First we calculate the middle of the interval:

int iMid = l + (int)((r-l)/2);

From the beginning r is =30 och l=0. (r-l)/2 then makes 15. Since this division might give a decimal number, we perform
a type cast with (int) within parenthesis in front of the division. In that way we ensure that the index always is an integer.
This half interval is added to the value of l. Since l by the time not necessarily equals 0 all the time, this means that we
take the left endpoint of the interval and add half the interval, i.e. we calculate the middle point of the current interval,
which is stored in the variable iMid.

Then we check if there is a match to the middle item of the interval:

if (iSrch == iProdid[iMid])

{

 iFound = 1;

 iPos = iMid;

}

If the searched product id equals the product id at the position given by the variable iMid in the product array iProdid,
there is a match, and the variable iFound is set =1 and the found position is stored in the variable iPos.

In case of no match, we check if the searched product id is to the left or to the right of the middle point:

if (iSrch > iProdid[iMid])

 l=iMid;

 else

 r=iMid;

}

If the searched product id is greater than the product id at position iMid, we set the left endpoint (the variable l) to the
value of iMid, which means that we move the left endpoint to the new middle value, and we have a new interval which
is the right half of the previous interval. Otherwise we focus on the left half of the interval and we let the right endpoint
(the variable r) get the value of iMid. In both cases the loop performs another turn.

By the time the loop has divided the interval so many times that we certainly get a match in the statement:

if (iSrch == iProdid[iMid])

provided that the user has entered a product id that is present in the array.

Here is the entire program:

#include <iostream.h>

void main()

{

http://bookboon.com/

Download free eBooks at bookboon.com

Click on the ad to read more

Structured Programming with C++

93

4 Arrays

 int l=0, r=30, iFound=0, iPos, iSrch;

 int iProdid[31] = {2314, 2345, 3123, ... 6745};

 cout << "Enter the searched product id: ";

 cin >> iSrch;

 if (iSrch == iProdid[0])

 {

 iPos = 0;

 iFound = 1;

 }

 if (iSrch == iProdid[30])

 {

 iPos = 30;

 iFound = 1;

 }

 while (!iFound)

 {

 int iMid = l + (int)((r-l)/2);

 if (iSrch == iProdid[iMid])

 {

 iFound = 1;

 iPos = iMid;

 }

 .

http://bookboon.com/
http://bookboon.com/count/advert/7e44064c-b968-4b1f-947b-a2af00d9019c

Download free eBooks at bookboon.com

Structured Programming with C++

94

4 Arrays

 if (iSrch > iProdid[iMid])

 l=iMid;

 else

 r=iMid;

 }

}

4.13 Summary

In this chapter we have learnt about arrays. We have learnt to declare arrays and assign values to them. We have also seen
the advantage with using loops in connection with arrays.

We have also studied an algorithm for sorting the items of an array. You should try to really understand the algorithm.
You should also remember how to write the sorting code in C++.

A sorted array is very efficient when searching for a particular value. We have studied how to do a smart search in an
array. The search method presented here is often called binary search.

4.14 Exercises

1. Write a program where you declare an array with 10 integers and then read both positive and negative
values to the array. The program should then:
a) print the first, the fifth and the tenth item.
b) print the sum of all items.
c) print the numbers in reversed order.
d) change sign of all negative numbers to positive, and then print them.
e) ask for a number and then print all numbers less than that number.
f) ask for an index and print the corresponding item.
g) ask for a number and print the index of that number. We assume that the user enters a number that
 exists in the array.
h) move the first item to the last position of the array.

2. Write a program that prompts the user for a month number and prints the number of days of that month.
Use an array like this:
const int iDaysInM[] = {31, 28, 31, 30, …};

3. Write a program that creates random temperatures between 15 and 25 degrees, one temperature per day of
the month July. The temperatures are stored in an array. The program should then create a new array for
August and copy the July values (see the section ’Copying an Array’). Finally the August values should be
printed.

4. Expand the previous program to compare the values of July and August and check if the arrays are equal.
5. Complete the previous program so that one of the August temperatures is changed before the comparison.
6. Complete the previous program with calculation of the average temperature during August. The program

should also print all temperatures greater than the average.
7. Declare an array that contains the following nine densities for metal alloys:

1.5 2.8 4.6

http://bookboon.com/

Download free eBooks at bookboon.com

Structured Programming with C++

95

4 Arrays

5.7 7.9 8.3
8.6 8.8 8.9
Write a program that prompts the user for a density and prints the one closest below the entered density.

8. Write a program that fills an array with 25 integers between 0-9. The program should then ask the user for a
number and print the number of occurrences of that number in the array.

9. Start with the Sales Statistics program earlier in this chapter and add logic so that if a salesman has sold for
more than 100000, he will get a fee also including 20% of the portion exceeding 100000.

10. Expand the previous program to also print the number of sales per salesman.
11. Expand the previous program to also print the average sales amount per salesman.
12. Declare an array containing some product id:s, and a price array with unit prices per product. Write a

program that prompts the user for a product id and prints the corresponding price. If the product id is not
found, a suitable message should be printed.

13. Complete the previous program so that the user also can enter a quantity of the product and get the total
price for the purchase.

14. Complete the previous program with a discount matrix according to the section ’Two-Dimensional Array’.
The user should be able to enter a product group and a customer group, and the corresponding discount
should be deducted.

15. Write a program that creates 10 random rolls of a dice and stores them in an array. The array should then be
sorted and printed.

16. Start with the program that searches a sorted array for a product id. Complete the program with
initialization of the array with as many product id:s as required, and run it.

17. Go on with the previous program and make it print the index position of the found product id.
18. Improve the previous program so that if you enter a product id not existing in the array, a suitable message

should be printed.
19. Expand the previous program with a price array that contains the prices of each product, and with a

printout of the price of the found product id.

http://bookboon.com/

